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ABSTRACT

This paper describes a study aimed at segmenting a high resolution

black and white Image of Sunnyvale, California. In this study regions

vere classified as belonging to any one of nine classes, residential,

commercial/industrial, mobile home, water, dry land, runvay/taxiway, air-

craft parking, multilane highway, and vehicle parking. The classes were

selected so that they directly relate to the Defense Mapping Agency's

Mapping, Charting and Geodesy tangible features. To attack the problem

a statistical segmentation procedure was devised. The primitive operators

used to drive the segmentation are texture measures derived from cooccur-

rence matrices. The segmentation procedure considers three kinds of

regions at each level of the segmentation, uniform, boundary and unspeci-

fied. At every level the procedure differentiates uniform regions from

boundary and unspecified regions. It then assigns a class label to the

uniform regions. The boundary and unspecified regions are split to form

higher level regions. The methodologies involved are mathematically

developed as a series of hypothesis tests. While only a one level seg-

mentation was performed studies asre described which show the capabilities

of each of these hypothesis tests. In particular an 83Z correct classi-

fication was obtained in testing th labeling procedure. These studies

indicate that the proposed procedure shldbe useful for land use classi-

fications as ell as other problems.
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NOTI C
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1. INTRODUCTION

This paper describes a study aimed at segmenting a high resolution black

and white (B/W). digital image of Sunnyvale, California. This scene con-

taimed a total of A7 Defense Mapping Agency's Mapping, Charting and Geodesy

(H, C & G) tangible features. The objective of the study was to segment

the scene into regions which correspond to as many of these 47 H, C & G

features as possible. Figure 1 shows a facsimile of the image. Table 1

shows the 9 land use classes considered in this study and their correspondence

to the M, C & G features. Clearly the classes chosen do not give as detailed

an image segmentation as required. The rationale for the choice of these

classes is given in Section 4. Methods for achieving a more detailed seg-

mentation using the methods presented in this paper are described in Section 3.

The time constraints of the. study necessitated that readily available tech-

niques be employed. Yet it was desired to have the methods used be as

general as possible. For these reasons texture analysis methods were utilized.

In particular, the spatial gray level dependence method (SGLDM) was selected

because two comparison studies [1,2] have shown it to be superior, real

world studies have demonstrated its. capabilities [3,4,5,6,7,8,9], and per-

ceptual psychology studies [10,11) have shown it to match a level of human

perception.

In selecting the segmentation procedure the desire for generality

led to the consideration of split, merge, and split and wrge types of

procedures [12,13]. A split type approach was the one selected. This

procedure used texture measures extracted from a region R to determine

whether or not RIis composed entirely of one of K known classes. If R

contains one of these classes then it Is appropriately labeled. If not,

L1



Figure 1: A facsimile of the high resolution black and white image of
Sunnyvale, California.



CLASS NAME M,C & G TANGIBLE FEATURE NAME

1. Residential Area Houses (Single Family)
Apartment/Hotel*

2. Mobile Home Area Mobile Homes

3. Vehicle Parking Area Vehicle Parking Area
Vehicle Storage/Motor Pool

4. Aircraft Parking Area Aircraft Parking Area/Apron

5. Runway Runway/Taxiway
Heliport

6. Water Salt Pan/Evaporators'
Lake/Pond Reservoir

7. Dry Land Mineral Pile
Dry Land (Bare/Barren Soil/

Non-Cultimated
Levee/Embankment/Fill
Crop (Cultivated)
Deciduous Woodland

8. Multilane Highway Multilane, Divided Highway
(Gross Median)

Multilane Highway
Cloverleaf/Interchange

9. Commercial/Industrial Fabrication Industry Building
Scrap Yard
Industrial Building
Industrial Conveyor
Industrial Rotating Crane
Comercial Building
Apartment/Hotel*
Barracks
Governmental Administration Bldg.
Military Admin/Operations Bldg.
School Building
RR Station/Depot
Airport/Airbase Control Tower
Hangar
Aerospace Assembly Building
Engine Test Cell
Wind Tunnel

!. Warehouse
Greenhouse
Drive-In Theater Screen

Table 1. A list of nine classes and the M,C & C tangible features
combined together to compose each class. Note that a region
containing the M,C & G Apartment/Hotel feature(*) Is placed in
one of two classes based upon the appearance of this region.
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then R Is split. The inferences regarding R are based on a series of

hypothesis tests. As such the procedure is related to the uniformity

predicate of Pavldis [12).

- . Experiments were performed which indicate the capabilities of the

segmentation procedure. The purpose of one of the experiments was to

determine whether texture measures could be used to accurately classify

a region into urban land use classes. For this study the nine classes

In Table 1 were used. The capability of the texture measures is evidenced

by a training result of 90% overall correct classification. A worst case

segmentation of the scene was conducted with a 83% overall correct classi-

fication. Other experiments were performed to evaluate the mechanisms used

in making the decision to split. One dealt with demonstrating the ability

to identify regions containing one or more "unknown" or "unspecified"

classes. Another dealt with identifying regions containing two or more

"known" classes, i.e., "boundary" regions.

These experiments Indicate the proposed segmentation procedure is

feasible and could be useful in segmenting high resolution urban scenes.

Further its generality is such that it would seemingly be applicable to

a variety of problems.

*4 4
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2. TEXTURE ANALYSIS METHODOLOGIES

2.1 Textu AnaLyaia and Lnd U6e CLaiic.ation

Many different texture analysis operators have been applied to the

land use classification problem. In this section a brief review of the

literature will be given in order to indicate the texture analysis methods

which have been employed and the results each has yielded. Generally

speaking, texture operators have been used successfully on a variety

of land use problems.

One of the first attempts to use texture analysis methods for land use

classification was made by Lendaris and Stanley [14]. They employed the

power spectral method (PSM) to analyze a high resolution B/W aerial photo-

graph. The two classes considered were gross m-ade and nothing manmade.

A 98.8Z correct classification was obtained In detecting natural areas.

Galloway [15] used the gray level run length method (GLRLM) to

classify 54 high resolution B/W aerial photographs. The classes considered

were orchard, wood, urban, suburb, lake, marsh, swamp, railroad and scrub.

The percentage of correct classification obtained for each class ranged from

83% to 100%.

Hsu [161 applied a different texture algorithm in the analysis of

7 D/W aerial photographs. This method involved the calculation of 17

texture measures from 3 z 3 or 5 z 5 windows. The classes considered were

vegetation, soil, pavement, composite field 1 and 2, and composite. The

best probability of correct classification obtained was 84.32.

Mitchell and Carlton [17] made use of the max-min method to find roads,

5
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grasslands and forests in B/W aerial photographs. Basically, the max-min

method involves locating local gray level extrema along a scan line of

the picture. The number of extrema of strength T or greater is a measure

used In making the classifications.

A study using the SGLD was performed by Haralick et al. [4]. The

data source for the study was 1:20,000 scale B/W aerial photographs. The

classes considered were old residential, new residential, lake, swamp, marsh,

urban, rail and woodlands. A total of 170 samples were considered. The

study yielded an 82.3% overall correct classification.

The above studies all involved reasonably high resolution B/W photo-

graphy. However, texture analysis has proved useful in much coarser resol-

ution Imagery such as the 1.1 acre ground resolution data of Landsat. The

texture operators applied to these data were used in conjunction with the

multispectral information to yield improved classification accuracies [4,18].

Texture operators have also proved useful on higher resolution multispectral

scanner (MSS) data such as aircraft HSS [19,20,21].

The studies of particular interest are those involving high

resolution 3/W imagery. These studies can be categorized as those where

selected samples were classified and those where a segmentation of a scene

was attempted. Haralick et al. [4] and Galloway [15] both classified

pure samples from a selected number of classes. Neither Involved the

consideration of regions composed of combinations of two or more classes.

On the other hand Lendaris and Stanley 114], Rau [16], and Mitchell and

Carlton [17] all attempted a segmentation. Consequently, they had to

kLassify regions composed of combinations of classes. However the number
D

and types of classes considered in these studies do not seem suitable for

urban scene mialysis. Also these studies had no provision for considering

6



more than one fixed primitive region size, i.e., no splitting or merging

type procedure was attempted.

2.2 The SGLVM AtgoJithm

To defend the selection of the SGLDM, recall that this algorithm has

proven useful on a variety of real world problems ranging from the analysis

of human radiographs to land use classifications [1,2,3,4,5,6,7,8,13,18,

19,22]. (A complete survey of texture analysis is presented In reference 23.)

Next, two comparison studies have shown the SGLDM to be a superior algorithm.

One of these studies [8] compared the relative merits of four algorithms,

SCLDM, GLRLM, PSM and the gray level difference method (GLDM), to do terrain

type classification. The SGLDM texture measures gave the best overall class-

ification accuracy. The other comparison study [9] evaluated the amount

of texture-context Information contained in the intermediate matrices of

these same four algorithms. Here again the cooccurrence matrices used

by the SGLDM algorithm were judged to be the best. Further it is worth

noting that Mitchell et al. 117] made a preliminary comparison of the

max-min method to the SGLDM. The comparison was based on the probability

of correct classification obtained by applying both the max-mis and the

SGLDK (with the energy, entropy, correlation, local homogeneity, inertia

as texture measures) to a set of texture data. The results Indicated

that the two methods performed about equally veil. This comparison to-

Sether with the fact that the max-mnn method is computationally less

complex than the SGLDM would seemingly make it a desirable alternative.

However, it Is believed that the max-min method Is an Innately weaker

• algorithm. This belief Is based upon the many simple textures which

cannot be discriminated by the max-min algorithm. For example, Figure 2

shows two visually distinct texture pairs neither of which can be dis-

criminated by the max-n algorithm.

7
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Hsu's method [161, while not having been directly compared to the

SGLDM, only seem appropriate for a bottom-up approach tc segmentation.

Such approaches require the incorporation of world knowledge into the

analysis process in order to idenitfy structures such as commercial

building, parking lots, homes, etc. Incorporating such Information has

proved to be a difficult task one which is not generally well understood.

Finally, the Julesz conjecture [10,11] supports the use of cooccurrence

matrices. It should be noted that recently a number of counterexamples

to the Julesz 'onjecture have been reported [24,25,26,27,2]. However

[29] indicates that these counterexamples can be discriminated. Hence,

at present there is no known example of a visually distinct texture pair

which c&-iot be discriminated by the cooccurrence matrices.

2.3 S.tAJti and Stzuctut Texztue Anoafy4Z

The desire has been to use cooccurrence matrices not only to dis-

criminate texture patterns but also to be able to use them to characterize

the structure in textures. In response to this motivation a model for

texture was formulated based on mathematical tiling theory [30]. Later

It will be shown that this model applies to the urban land use data.

The system which is being developed to measure Image structure using the

cooccurrence matrices is called the SSA(statistical structural analysis

system).

Ve6.on 1: A W4e T is a closed topological disk.

Peiition 2: A function o:E 2 "0 E2 is called an ".6omet y or

CfonUen e transformation if it maps the Euclidean plane onto itself and

if the function preserves distance. That is, if x and y are points in E2

then SIla- .1 - Ilao) - o >ll.

A cooccurrence matrix S(6,T) * [s(i,j,6,T)] is a matrix of estimated

second-order probabilities where each element s(1,J,6,T) is the estimated

probability of going from gray level i to gray level J given the displacement

Vector 6 * (Ax,6y) and T, the region size and shape used to estimate the

9



probabilities. In this context T is a tile such that s(i,j,6,T) is estima-

ted from the restriction of the picture function S(x)to o(T) where a is a

translation isometry. Computationally S(6,T) is determined using the equation

s(i 6,T) - O{ I x +6 c acT), S(x) 1 , g(x+S) - j)

where N - 0{x I x, x+6 c T) where 0 denotes the order of the set, i.e.,

the number of elements.

In what follows it is frequently convenient to consider 6 - (Ax,ly)

not in a cartesian form but rather in a polar form 6 - (d,6) where

d - max [Ax,&y] and 6 - arc tan (Ay/Ax). In polar form d is called the

intersample spacing distance and e is called the angular orientation.

in this study six measures are computed from each matrix S(6,T).

These are:

1. Inertia

L-1 L-2
1(8.T) - I (i J)' s(i,J.6,T)

1-0 J-0

2. Cluster Shade

: AM6T) '.(I + J 3 W. siJ.8,T)

1-0 Js

3. Cluster Prominence

SB(6,T) = 1~ ( +l 3 - - i) s(lj 6,T)

1=0 J-0

4. Local Hosogeneity

L(61 s(ijL.,-,T)
1-0 J-0 1 (-J) 2

.o
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5. Energy

L-l L-1 2
E(6,T) - I I [sji,J,6,T)l

1-0 J-0

6. Entropy

S H(6.T) L-l li-iROMT-- 8 (ij,6,T)log (s(i,J,6,T)
1-0 J=0

where

1-0 j If s(i,j,6,T)1-o J-0

L-l L-1
ij "j o(i,j,6,T)

1-0 J-0

and where L is the number of gray levels in the processed image.

2.4 Comment6 on the Textwe Mea6aez

There are two places where a loss of important texture-context in-

formation can occur. The first is In going from a digital image to the

cooccurrence matrices. Results reported in [2,29] together with the fact

that there is no known visually distinct texture pair which cannot be

discriminated by the cooccurrence matrices suggest that little texture

information loss occurs here. The other place a possible loss can occur

is in the transition from the matrices to the set of texture measures. It

was reported in [23 that the usual set of texture measures used with the

cooccurrence matrices namely, the energy, entropy, correlation, local

homogeneity and inertia measures, do not contain all the important texture-

context information. For example, Figure 3 shows a texture pair which can

-easily be discriminated using Information in the cooccurrence matrices

but which cannot be discriminated based on the values of the usual five

texture measures computed from these matrices.

r 11
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Figure 3. A visually distinct texture pair which can easily be discriminated
based on Information contained In the cooccurrence matrices but
which cannot be discriminated based on the values of the energy.
entropy, correlation, local homogeneity and Inertia measures com-
puted from these matrices.
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" Recent studies [30,31] have addressed this problem and have resulted in

the definition of two new measures and an explanation of the utility of

the Inertia measure. The two new measures, the cluster shade and cluster

prominence, are believed to gauge the perceptual concepts of uniformity

and proximity [10:32]. Further it was shown that the inertia measure can

be used to gauge the qualities of texture periodicity [33,34] and the

texture gradient [35]. Since the inertia, cluster shade and cluster

prominence are known not to be sufficient, in that a visually distinct

texture pair exists which cannot be discriminated by these measures, it was de-

cided to also include the energy, entropy and local homogeneity in the

measurement set used in this study.

To see how a texture measure computed from the cooccurrence matrices

can be used to determine a visual quality of a pattern consider the

following example involving periodicity detection. For simplicity consider

a periodic texture composed of small black squares appearing on a white

background. Assume that the horizontal distance between the center of

one black square to the center Imediately to the right Is L. Further

assume that this texture covers the whole plane. It can be shown 131]

that the inertia measure, I(6,T), 'for large enough T computed from this

texture has the following properties:

1) I(6,T) - 0 for 6 a (t,0"),

ii) 1(6,T) > 0 for 6 - (d,0"), d - l,2,...,L-1, and

iii) 1(6 n,0) - I(6n.0') for 6n D (nO*), 6 - (d+n,0") and

n,m - 1,2,....

Consequently to f Ind I one looks for the intersample spacing distance

which gives the ainimum horizontal Inertia value, and checks for periodicity

in 1(6,T). The number t then gives the period of the texture in direction

0.

13
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The importance of this periodicity detection is that it can be used

'U to identify a special type of unit pattern, the period parallelogram unit

pattern [31]. The utility of the period parallelogram unit pattern stems

from the fact that any periodic texture can be decomposed Into a period

parallelogram unit pattern. Further only two vectors, a and b shown in

r Figure 4, specify not only the size and shape of the period parallelogram

K.unit pattern but the placement rules as well. Section 4.4 shows the im-

portance of the period parallelogram unit pattern in the segmentation of

urban scenes.

14



Figure 4. A period parallelogram unit pattern requires only two vectors
a and b to specify both the size and shape of the unit pattern
as well as the placement rules to arrange this pattern.

15
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3. FRAMEWORK FOR IMAGE SEGMENTATION

The proposed segmentation procedure is an early vision system.

* Classically such procedures have been based upon detecting edges or de-

tecting uniformity by examining the histogram of the gray levels [363.

The cooccurrence matrices contain edge Information as well as the first-

order probabilities of the gray levels. Hence measures computed from

cooccurrence matrices would appear to be useful early vision operators.

Further It is desirable to have a segmentation procedure that would

allow one to move back and forth between segmentation levels, verifying

and reinforcing classifications without the need for semantic Informa-

tion. It is believed that texture operators provide a means for doing

this. A texture pattern is made up of unit patterns and placement rules

[31). One can consider a comercial block as a unit pattern. The struc-

tures such as buildings and parking lots can be considered micropatterns

of this unit pattern. Cast in this framework, the problem becomes one

of analyzing macro and micropatterns of texture. An advantage of this

approach Is that one can use uniform data structures and analysis pro-

cedures In considering different levels of detail. This should provide

for a better structured segmentation method.

There are basically two approaches to Image segmentation. These are

boundary detection and region formation (12,37,38). Of these, region form-

tion approaches are best suited for use with texture operators since texture

operators, Inherently, characterize the qualities of a region. Region

formation approaches can utilize either split, merge, or split and merge

tachniques. A merge procedure Is a bottom-up approach where small regions

are combined based upon soe uniformity criterion. Unfortunately, the

statistical characterization of these small regions Is less reliable

16



than that of larger ones. Further In complicated scenes, such as urban

scenes, these small regions could belong to anyone of a large number of

primitive classes such as grass, concrete, car, tree, etc. Combining

these primitives to form more meaningful groups, i.e., comercial area.

residential area, etc., would require a substantial reliance on semantic

Information.

As an example, one might decide to analyze a commercial area by f irst

detecting edges and then linking them together to form structures of the

scene. One could then perhaps consult a model to determine that these

structures comprise a commercial area. A problem with this approach is that

each of these subproblems Is Itself difficult and error prone.

*1 A top-down procedure, such as a split procedure, seems to be best

suited for use with texture operators since classification accuracies

obtainable using texture analysis methods usually decrease as a function

of region size. Therefore it is appropriate to use as large a region as

possible and divide it as necessary. Further for an early vision system,

a split procedure seems most appropriate since it begins with a few broad

classes, i.ea., comercial area, residential area, Instead of a building,

street or tree. Because of the nature of the texture algorithm as these

large regions are split the texture measures computed from the smaller

areas become more sensitive to finer detail. Consequently, classes

whose differentiation depends on finer detail can be handled later at

sow high~er level using Smaller region size and perhaps contextual inf or-

ustion. However, there are problem associated with Initially considering

a large region size. For eamp le with large regions, It Is likely that

a mixture of patterns will be present. These problem are addressed In

Section 3.2.

17



The basic steps involved in the proposed segmentation process are

illustrated in Figure 5. At the first level of the segmentation the scene

Is Initially divided into R1 regions such that these regions cover the image.

The size of the R1 regions has been determined during the training phase

when the classes at level 1 were selected. Next the appropriate texture

measures are computed from the R, regions. These measures are also determin-

ed during the training phase when the 1 classes are selected for level

1. Each of the R1 regions is examined to determine if it is uniform and

should be labeled with one of the K1 class labels. If the region cannot

be labeled, i.e. if it is a boundary region or it contains one or more

unspecified classes, then it is passed unlabeled to the level 2 stage of

processing where a new set of classes, K2 , is considered. The process

should stop when all the regions are labeled. Figure 6 indicates the

recursive nature of the process. Section 3.2 explains how the labeling

decisions are made.

Several comments are in order. In this study only one level of seg-

mentation was performed where the classes were labeled and the splitting

criteria tested. However the formulation of the segmentation procedure

will be presented in complete generality. Also the segmentation process

will ultimately need to be extended to provide for a global optimization.

This extension can be readily added to the methods presented.

3.1 Wtivating the StAUtic.t Segmenttion Stutey

Region growing methods necessarily utilize clustering techniques

636,37,38,39]. ypically each subregion of the scene is characterized

by a measurement vector x - 1 1 X ... ,x I, where denotes the value

of measurement i. Such a vector Is a point in n-dimensional Euclidean

space, En. Intuitively, measurement vectors computed from visually similar

18
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Fiture 5. A flowchart of the basic steps involved In the proposed
segmentation procedure.
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figure 6. The natural pyramid structure of the segmentation. (a) An example
of a three level segmentation where level 0 corresponds to the
whole Image, level 1 the first level of the segmentation, etc.

* (b) The regions formed during the segmentation. (c) A tree showing
how the regions of (b) were formed.
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regions should lie "close" together in En while measurement vectors com-

puted from visually dissimilar regions should lie "farther" apart. Con-

sequently,* measurement vectors computed f rom regions containing the same

class should form a cluster in in.

The proposed segmentation procedure attempts to incorporate the useful

attributes of both supervised and unsupervised clustering approaches

* (39,40). It utilizes some knowledge of the scene by allowing one to

select the classes to be considered at each level of processing. This

is accomplished by selecting a training set for each class at each level

where it is to be considered. Thus measurement selection can be perf orm-

ed so that only the best measures need be used in doing the segmentation,

a mode of operation allowed only by supervised procedures. The proposed

procedure provides the flexibility to determine whether a region is com-

posed in part or entirely of a class different from the X preselected

classes it has been taught to recognize, a capability usually only found

in unsupervised procedures. This capability to detect such "unspeci-

fied" regions is an important part of the segmentation process. The

procedure also provides a mechanism for identifying regions composed of

two or more of the K preselected classes, i.e., "boundary" regions.

These capabilities enable It to split such unspecified and boundary

regions and to examine the resulting smaller regions using different

classes and different level of detail.

The proposed segmentation approach would seem somewhat similar to that

presented by Chen and Pavlidis (41,42). In this case, however, a more

sophisticated mltivariate formulation for the decision making is developed.

3.2 Fo~r4L4.zin9 the ConeeptA

To formalize the above concepts a number of definitions are useful.

PejiAion 3. At a particular level of the segmentation process a
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region R is said to be wuiO'Un if it is composed entirely of only one

of the K classes the procedure has been trained to recognize at that

level.

Ve:6 ,nition 4. At a particular level a region R is said to be a bouno, y

region if it is composed of two or more of the K classes the procedure

has been trained to recognize at that level.

Vejim~tion 5. At a particular level a region R is said to be an unpe -

£"4 if any part of R contains a class unknown to the procedure at that

level, i.e., something other than one of K classes.

The segmentation procedure requires that given a region R, the follow-

ing decisions be made.

i) Determine if R is either an unspecified region or a

boundary region. If it is either then split R to

form higher level regions.

ii) Determine if R is a uniform region. If so, label R with

one of the K possible class labels.

The capability to call R an unspecified region provides the procedure

the ability to recognize an "unusual looking" region and not to force

it into one of K known classes.

The required decisions can be stated as a series of hypothesis tests.

For simplicity zonsider only two classes, w and w2 . Given a region R,

one can define the following hypotheses.

Ho: R is composed entirely of class w,.

HI: R is composed entirely of class w2.r .2: R is a mixture of both w and w2 .
H3: R is composed of something other than ol and/or 2 .
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Note that for hypothesis H3,if any part of R contains something other

than w and/or w2 then R is considered as not containing eithez w or

'w2

Determination of the uniformity of a region involves two tests. R is

uniform if either hypothesis H or H1 is accepted in Tests 1 and 2. If R

is uniform then Test 3 resolves the labeling.

TEST 1: H3 versus H or H, to differentiate uniform regions
3 H0

from unspecified regions.

TEST 2: H2 versus H0 or H1, to differentiate uniform regions

from boundary regions.

TEST 3: H° versus HI, to assign a class label to an uniform

region.

Methods have been developed for performing these tests. In developing

these methods an assumption was made concerning the nature of the pro-

bability density functions. The assumption not only aids in developing

the tests but also allows a parametric approach be taken.

A6humption 1. Let wj be one of a possible K classes for a level.

It is assumed that f(x w) is normal, N(y, Z), with mean P and convariance,

Ii.

3.3 The Mti.c., Fo'uxation oj the Hypothe6e.6 Te,6t.6

The formulations for hypothesis Tests 1,2 and 3 given above can be

easily generalized to cases when more than two classes are involved. This

straightforward generalization requires one to consider density functions

f(XIW )V j - l,...,K all of which exist in the same pattern space.

.owever, rather than using this straightforward formulation a modification will

be used; one which affects the way each test will be conducted.

The motivation for the modification is based on the fact that the
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number of training samples available limit the number of measurements that

can be used. This fact stems from the Hughes' peaking phenomena [43] and

Foley [44] suggests that there be at least 10 training samples available

for each class for each measurement used. This restriction poses a problem

in situations where there is a class with significantly fewer training

samples than the other classes. In typical multiclass procedures the

* number of training samples available for such a class determines the maxi-

mum number of measurements which can be used to define all the classes.

Usually in an image analysis problem the quality of the measurements

are such that a measure is useful in discriminating only a few of the

classes. Consequently, a number of measures are required. Therefore

a restriction on the number of measurements imposed by a single

class would seemingly adversely effect overall performance. A better

approach would be to subdivide the problem into a number of independent

decisions wnere the effect of the restriction on the number of measurements

will be minimized. A pairwise approach to each test accomplishes this

objective.

To describe the pairwi.se methods used to implement the hypothesis

tests the following notation will be used. Let fjk (k j) be the class

conditional density function of class wj for the class pair decision in-

volving wj and wk. Assume fjk(kQ wj) is normal, N(vkZjk). To aid In

understanding the notation, the subscript jk on f and x is used to indicate

the density functions and measurement vector involved in the class pair

' W"k decision. The subscript J,k on and Z is an ordered pair where

J indicates the class wj of which . and I are the mean vector and covariance

matrix and k denotes the other class, wk. involved in the class pair decision.
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To determine the measurement subset which defines the components of

.k for each class pair a measurement selection procedure is used. The

algorithm used in the study is a forward sequential search (FSS) algorithm

which independently selects a subset of the available measurements to use

In making each class pair decision. At the mth iteration the algorithm

augments the subset selected at the (-I)st iteration with another measure.

This measure is the one which when combined with subset selected at the

n(m-i)at iteration gives best probability of correct classification.

3.3.1 TEST 1: Differentiating Uniform from Unispecified Regions

A region R is unspecified if either R is composed entirely of a

new class, i.e., not one of the K possible; or it is composed of a com-

bination of two or more new classes; or it is composed of a combination

of one or more new classes with one or more of the K classes. In any

event the distribution of x computed from unspecified regions should be

different from the distributions defining the K classes. Consequently,

this hypothesis test becomes merely a matter of determining whether x

is a member of any of the populations of the K classes.

A standard mechanism for performing such a test is to use the

Chi-squared test. In a pairwise form of this test, R is considered to

be an uniform region if for at least one class 10

2 - t -l 2

£ '..K, I J. 0theivise consider R an unspecified region. Here

2
2 * 100 a percentage point of the Chi-squared distribution withXa d

d degrees of freedom, a - Prob (t 2 < 2. d ), and dit Is the dimensionality

of ( 145). Reference 46 gives an application of such testing to tex-

ture analysis.
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It should be noted that since the dimensionality of =i may vary

2
from class pair to class pair, one needs a method for relating t , a and

( 2
" The interrelationship is given by

T"1

T, I~/ T2 3  frd en
1 exp(----) i-ifor diji even

T ex T) d -1 )/2 i,21 T(21-l)
a f f(t)dV r exp r 2 )dr 2xp(-  T(2)'0 I=I (21[)!

for dj, odd

where
1.e- t 2

~(t)- 2~~) j11 e-11/2

2 2
and dV is differential of volume. Note that in the above XT;d -T

3.2.2 TEST 2: Differentiating Uniform from Boundary Regions

A boundary region R can be composed of combinations of 2 classes,

3 classes,...,K classes. It can be argued that as the number of classes

contained in a boundary region increases the more dissimilar the measures

computed from this region will be from any of the K known classes. Con-

sequently the greater the probability that such boundary regions will be

detected as unspecified regions by Test 1. The more difficult problem

Is n differentiatitig uniform region from boundary regions containing

only two classes. This differentiation is particularly important since

as the region size Sets smaller with increasing levels the basic test

differentiating uniform regions from boundary regions is that Involving

boundary regions composed of only two classes. Therefore, the objective

of Test 2 is differentiating uniform regions from such boundary regions.

26
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To develop this test let bjk denote a boundary region R composed of

w and wk. Let x be a measurement vector computed from R. Assume that

x - + (1-O)x2 where x1 is the measurement vector computed from the

1008 percent of.R which contains only class Wj and s2 be the measurement

vector computed from the 100(1-0) per cent of R which contains only class

wj* Further assume that for bjk boundary regions 8 is uniformly dis-

tributed 0 < 8 < 1.

Under the above assumption it can be shown that

I1

fjkQjk bjk) = 
0 fjk(-!jk$)d

where f is the density function of -k computed from bk boundary

regions and further where

k jk' 6) N(,k($), 0 jk(B0))'

k ( ) =O-j,k + (1- 8)

and

JA(0) 8 lj,k + (1 - )2 zk,j"

Given the above the obviour pairvise test is to call R uniform if there

exist at least one k such that

fjk (!k wk) P(wk) , fjk(kbjk) P(bjk)

for j 1 1,....,K, j ' k where P(bjk) denotes the a priori probability

of occurrence of boundary regions composed of wi and wk. Otherwise

call R a boundary region.

The development of the above test requires the estimation of the

a priori probabilities, P(bjk). These are difficult to estimate and their

values can affect the test results. In addition, this test is computa-
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tionally complex since it requires (2i) numerical integrations to evalu-

j ate the density functions fjk(xk

Because this test is computationally complex and, moreover, yields

only approximate decision surfaces, it was decided to use this test only to
provide intuition into developing a simplier test; one which does not

require the evaluations of the density functions, f (xk). The simpler,.:~~ ~ k , - k . T e sl p r

test is call R uaifar=.i.f there exists at least one k such that

j k~ kJ

for j j ,...,K. j ' k and r, a preselected number, 0 < r < 1.

Otherwise call R an boundary region. This test is referred to as

the "ratioing" test.

3.3.3 TEST 3: Labeling Uniform Regions

A pairwise Bayesian classification scheme will be used to label the

uniform regions. Such a procedure-is an optimal strategy for minimizing

the average misclassification error for each pairwise problem [47]. The

pairwise method involves solving K (K - 1)/2 separate subproblems each

Involving a class pair Instead of one K class problem directly. In the

procedure used in this study the class conditional density functions

fjkXjklwj) used in making each class pair decision are assumed to be
normal. Further the a priori probabilities of the classes are assumed

to be equal. The results of each class pair decision are tallied using a

polling function. The measurement vector is assigned to the class which

rejected the vector the fewest number of times.

For a more complete description of these tests the reader is

referred to [48].
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4. SELECTION OF SCENE DEPENDENT PARAMETERS

In any segmentation method there are certain scene dependent para-

meters which must be input into the algorithm. For each level to be con-

sidered in the proposed segmentation algorithm the following must be

specified:

a) the K classes, wl,w 2 ....AJK, to be considered,

b) the size of the regions, R to be used,

c) the number of displacement vectors to be used in the computing
the cooccurrence matrices and

d) a method for selecting the training samples from the image.

In this study only one level was considered and hence only one set

of parameters had to be selected. However, similar reasoning to that

presented should be applicable to any level. The level selected for this

study should be considered as a low level in the pyramid data structure,

see Figure 6, because of the region size used and also because of the amount

of detail present In the classes.

4.1 SeteeCon oj the Ca.aea6 jo SegmenAton

Three criteria were established for selecting the classes.

1) The classes should correspond as directly as possible to the
M, C & G tangible features.

2) Each class should comprise a large enough region of the Image that
an adequate training set can be selected.

3) The classes were chosen such that if RJ represents the regions of

the Image labeled class w ythen
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should be the whole scene. Further

Rjfn Rk j k.

Criterion 1,2 and 3 led to the selection of the classes in Table 1.

An important point that should be made concerning the runway, vehicle

parking, aircraft parking and multilane highway classes is that all these

classes are composed of the same micropatterns, namely, a large paved

area surrounded by dry land. This might lead one to think that it would

be difficult for texture analysis methods to discriminate them. However,

one should note that there are clues that can be used by the textural

analyzer. A vehicle parking area can be discriminated from the other

classes because of the presence of cars parked In a regular fashion. If

no cars are present the stripes used to delineate the parking places can be

used to make the determination. However, if neither of these signs are

present and only a concrete slab is visible then the discrimination would

not be possible based solely on textural information. Similarly with the

aircraft parking area, if planes are not present and parked in a regular

fashion then textural Information cannot be used by itself to discriminate

this class. Runways and multilane highways can be discriminated because of

the difference in the width of the paved area comprising them. Highways,

even those with several lames, are not usually as wide as runways or

taxiways at airports. Also, the natural wear marks, i.e., tire marks,

oil marks etc., are dif ferent. All these indicators can be detected by
J

texture algorithms.

The dry land class represents a combination of five reasonably diverse

M4, C & C tangible features. Many of these 3M, C G features made up such

30



a small area of the image that they could not be considered as separate

classes. For example, there were only two small mineral piles and while

there were 19 sited occurrences of deciduous woodland, the total area occupied

* was very small. Similarly, the total area of crop (cultivated) land in the

* scene was very small and seemed inadequate for obtaining a satisfactory

training set. Finally, while there was a reasonably significant amount of

levee, a decision was made not to consider levee/embankment/ fill as a

separate class. Given that the mineral pile, deciduous woodland, crop

(cultivated) land and levee/embankment/fill features would not be treated

as separate classes, it remained to determine with which class each should

be merged. The most obvious selection seemed dry land.

The most diverse class is the comercial/industrial class. It is

composed of a total of twenty different M, C & G features. Each feature

comprising this class did not seem to occupy enough area of the image to

be considered a separate class. These twenty features were all combined

into one class because no smaller groupings of them could be found which

resulted in more homogeneous visual classes and which, at the same time,

provided an adequate set of training samples.

Ten of the 47 M, C &C features appearing in the image defy categoriza-

tion in the nine class scheme chosen. Host of these features represent

* "small" objects which usually occur as stand alone entities. Examples

are nine shaft structure, display sign, radio/TV antenna, power trans-

mission line etc. features. Because these features occurred so infre-

quently and comprised such a small area of the image, they were not con-

Aidered in the segmentation.

4.2 Seteto o6 the~ Region Size

For each level of segmentation there is a strong Interrelationship

between the ese of the region R and the classes w,.w which can be
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considered. For each class w the training samples for this class must

be entirely composed of wj, The larger R the more difficult it is to find

such training samples. Consequently the larger R the fewer the number, K,

of classes that can be considered since each class must occupy a larger area

of the scene.

The comercial/industrial class effectively established a lover bound

on the region size that could be used since the "unit pattern" of the

commercial/industrial class is substantially larger than the unit patterns

of the other classes considered. For example, see Figures 7 and B.

The region size selected, was 145 x 145. It was a compromise between

two opposing requirements. First, one would like the size of R to be as

small as possible so that a fine segmentation, i.e., the boundaries between

classes can be accurately determined. Unfortunately as should be clear

from Figures 7 and 8 the smaller the region size the greater the probability

of misclassification. The second requirement, to have each region be labeled

as accurately as possible, forces larger region sizes to be used. The size

chosen was estimated by overlaying various region sizes on the image and

selecting the size which appeared to be larger than the largest of the unit

patterns for the various classes considered.

4.3 Selection 06 the Tuainn Sanpte.6

Ground truth information was provided which subdivided the scene

into areas corresponding to the M, C & G features. These data were translated

into the nine class form using the correspondences provided in Table 1.

Figure 9 shows examples of the training samples selected. Note each

.training sample is 145 x 145.
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a.

b.

d.

Figure 7. Exauples of (a) a 50 x 50 region, (b) a 100 x 100 region,
(c) a 145 x 145 region and (d) a 200 x 200 region of a
coinercia1/industrial area.
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residential commercial/industrial mobile home

vehicle parking dry land water

runway/taxiway aircraft parking multilane highway

Figure 9 . Examples of training samples, for the nine classes used
In the study.



To "effectively" increase the total number of training samples, over-

lapping was permitted, i.e., S- was not required to be * where SJ isn

sample n of class wj and Sj is sample m of class w1 . If S4 S j 0 0 then

the area of the intersection was alway less than half the area of SJ or
n

J i.e., 145 x 145. An example of the overlapping is shown in Figure 10.

The fact that the training sample regions overlap might seem at first

glance, a bit disquieting. However, overlapping is desirable because one

can not always be assured how the grid cells will be located in the testing

phase of a study. Obviously in the cases where sufficient data is avail-

able for training, no overlapping is required.

4.4 Setection oJ the Di.pacement Vectou

Recall the displacement vector 6 is a parameter in the algorithm.

For each value of 6 a cooccurrence matrix, S(6,T), is computed. Each

displacement vector, 6 - (d,e), has two components d and 6 where d is

the intersample spacing distance and 8 is the directional orinetation.

The 6 parameter provides directional sensitivity and investigators have

usually assumed that only four values of 6 were needed, 6 - 00, 45, 90,

135- [1,2,3,4,5,7,8,22]. Also, previous work [6,7] usually involved at

most two values of d namely, d 1,2, for a total of eight different values

of 6.

Recent work [1,2,9,30,31) however, has indicated that the discriminatory

power can be improved by considering more values of 6. However, from a

practical point of view the number of values must be limited. The problem

then is to select a relatively few 6 values which will allow good discrimi-

nation. Since there is little theory on the subject,of 'selecting the

6 values, a heuristic method was employed.

First the values of 6 were selected. This was done by determining

the orientations of the majority of the streets appearing in the scene.
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Figure 10. Illustrates how the training samples were
overlapped to get more training data for
the mobile home class.
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F It should be observed that most manmade urban structures tend to be

aligned with the streets. Thus, the orientations of the streets are

important. Note that the lower half and the upper right part of the

Figure 1 have streets which are aligned in the 75* and 165* directions.

The upper left part of the image has streets aligned in the 0* and 90*

directions. Finally, the airport has runways aligned in the 19* and

109* directions. Hence, the O's considered were O% 19% 75% 90%

1090, and 165. Obviously using such scene specific information as the

orientation of the streets tends to limit the generality of the segmenta-

tion results.

The other component of the period parallelogram in the texture model

besides the directions are the magnitudes. In order to determine if urban

land use data fit this texture model representative areas from each of the

* nine classes were examined. Figure 11 shows a representative area selected

for the residential class. From each of the representative areas the

texture measures were computed for d 1 , ...,80 and for 0 values which

reflected the major structural character of the pattern. Usually only

two e values were considered for each of the representative regions and these

* values were usually 90* apart. This reflects the geometry of manmade

structures.

Plots were generated showing the variation in the measurement

values as a function of d f or a given 0. Examples of two such plots for

the inertia measure are shown in Figure 12. A comparison of these plots

f or the nine representative regions allows determination of those d

values which provide good discrimination. Consider, for example, the
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Tigure 11. (a) Rasidential area and (b) mobile home area used to compute

the Sominal Values of the texture seasuremefts. note these
regions were not required to be 145 x 145 but just homogeneous
areas.

39

wWaft&
. ... ..-

.. . . .. . .. . . .
. . . . . . . . . . . . .



INIEASAI'PLE SPACING 0

a.

S.b.

Figure 12. Plots of the Inertia measure computed from the two areas
shown Ini Figure 11. (a) The Inertia value computed from
the residential area along the 0 -165* direction.
(b) The Inertia values computed from the mobile bomne area
along the 80* direction.
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plots in Figure 12(a) and 12(b). Observe that there is a significant

difference in the inertia measure values of d between 16 through 22.

Consequently, d values of 16 and 20 should provide good discrimination.

Note d values of 17,18 and 19 would also provide good discrimination

between these two classes. Similar consideration of all the plots

resulted in the selection of eight values of d, d -1,2,4,6,8,12,16,20.

Hence the total number of 6 values considered initially was 48, eight d

values and six e values.

There are some interesting observations which can be made about the

plots in Figure 12. First, note that the local minimum occurring at d - 74

in Figure 12(a) corresponds to the distance between the streets in

- -. Figure 11(a). Further the local minimum occurring at d -38 corresponds

to the distance from the center of a street to the back property line of

a residential lot. Plots of the inertia measure in the 75* direction

show that the inertia measure can also be used to gauge the width of the

lots. Hence the inertia measure can determine the average lot size in

the subdivision pictured, i.e.,* the period parallelogram unit pattern

* . of the residential area. Such information could theoretically be used to

determine the area which has to be searched for objects such as cars,

driveways, etc. Similarly plots in Figure 12(b) show that the inertia

measure can be used to gauge structural information from the mobile home

area of Figure 11(b).

The last example which shows how structural information can be

gauged is the vehicle parking area s hown in Figure 13. Figure 14 shows

.the basic structure of this area And gives the number of pixels between

the various elements of the scene. Figure 15 shows plots of both the local

homogeneity measure and the inertia measure computed along the 6 75*

direction. Note that the local homogeneity measure can be used to determine
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Tigure 13. An example of vehicle parking area.

42



. -0--

34

Figure 14. The structure of vehicle parking area. Also given Is
the number of pixels between elements of the scene.
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the distance between the rows in the parking lot while the inertia measure

cannot. Further it is interesting to note that the power spectrum cannot

U" be used to detect this structure either since the power spectrum and inertia

measure are essentially equivalent [2,31).

Given the fact that the texture measures gauge visually perceivable

qualities of patterns the process described above for selecting the 6

values allows one to incorporate the visual differences among the classes

into the segmentation process.

'.J4
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5. A ONE LEVEL SEGMENTATION OF THE SCENE

In this section studies are described which

.i) evaluate the capabilities of the texture measures
to characterize the land use classes;

iI) evaluate the capabilities of the pairwise classification
procedure to label the uniform regions, i.e. ones which con-
tain only one land use class; and

iii) estimate the performance of the proposed seg-

mentation procedure.

These studies resulted in a one level segmentation of the scene. Note

the capabilities of Chi-Squared test and ratioing tests used in differentiat-

ing uniform regions from those which should be split are given in Section 6.

5.1 o6 the TextWae Mea6uka to Chauctekize Land We Cta.ez

The best method for evaluating the capabilities of the texture measures

is to determine how well they can discriminate the land use classes.

Commonly the training results are used to estimate this discriminatory

power. To acquire the training results requires

i) the extraction of the texture measures from the
training samples;

ii) measurement selection to obtain the measures that
should be used to make each class pair decision;

Iii) estimation of the necessary mean vector and covariance
matrices; and

iv) the application of the pairwise classification pro-
cedure to the texture measures extracted from the training
samples.

The maximum number of measurements which could be used to make each class

pair decision was derived using the Foley criterion [44] with a minimum

of 8 samples in each class for each measure used. The measurement sele-

tion method was a forward sequential search procedure [5). it is worth

observing that 3 of the 5 measures selected in the residential/mobile home
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class pair decision involved d values of 16 and 20. Note that this agrees

with the observations concerning the plots of Figure 12.

The training results for this study are given in Table 2. The

percentage of overall correct classification obtained was 90Z. This

figure was computed by dividing the total number of correctly classified

regions by the total number of training samples.

A few observations concerning the training results should be made.

First, It should be noted that the comercial /industrial class and the dry

land class represent the two most heterogeneous classes. That is, there

are a number of visually dissimilar areas comprising each of these classes.

Consider, for example, the dry land class. This class is composed of grass

* land, mixture of grass and trees, cultivated areas with prominent rows and

areas of exposed soil with little or no grass. Similarly, the commercial/

industrial class is composed of such heterogeneous possibilities as a

drive-in theater screen, wind tunnels, apartments and railroad station/depot.

The heterogenous make up of these classes shows itself in the training results

from the fact that members of most of the other seven classes were misclassi-

fied into one or both of these classes.

Another point of interest about the training results is that the

majority of the incorrect classifications were graceful misses. That is,

In the majority of Instances when a misclassification occurred the class

In which the sample was Incorrectly placed was a good second choice for

placing that sample. Consider for example the residential samples that

were misclassified. These samples were all labeled commercial /industrial.

Residential areas look more like commercial /industrial areas than any

of the rest of the classes. Further consider the misclassified mobile

howe samples. These samples were placed In the residential or comercial/

Industrial classes. Again, both of these classes represent better alternatives

K4



COMPUTER CLASSIFICATION
PERCENT

RES COM MH W DL WTR RW APK m TOTAL CORRECT

RS 78 5 0 0 0 0 0 0 0 83 93.982

CON 2297 1 1 18 0 0 0 9. 328 90.552

MH 2 3 36 0 0 0 0 0 0 41 87.802

SVPK 1 6 0 18 0 0 0 0 0 25 72.00

r DL 2 13 2 0 322 1 3 0 10 353 91.222

iWTR 0 0 0 0 1 84 0 0 0 85 98.822

lW 0 2 0 0 6 0 70 0 0 78 89.74%

APK 0 2 0 0 1 0 0 18 0 21 85.71Z

1HW 0 13 1 0 8 0 0 0 99 121 81.822

TOTAL 85 341 40 19 356 85 73 18 118 1135

OVERALL PERCENTAGE CORRECT CLASSIFICATION 90.042

RES - Residential

CON - Co-mnercial/Industrial

MH - Mobil Home

VPK - Vehicle Parking Area

DL - Dry Land

WTR - Water

RW - Runway/Taxiway

APK - Aircraft Parking

MHW - Multilane Highway

Table 2. The results obtained by classifying the
"' training samples. The training resultsgave an 90% overall correct classification.
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than any of the other classes. Also the vast majority of the misclassified

Svehicle parking area samples were called commercial/industrial area samples.

Note that many of the commercial/industrial samples have large parking areas

contained in them.

C Also consider the confusion between the commercial/industrial class

and the dry land class. As was stated earlier both the comercial/indus-

trial and dry land classes are heterogeneous in structure. Further, almost

( every class has samples which are misclassified into one of these two classes.

The confusion between these two classes seems to be based on a similar

structure. Many of the comnercial/industrial training samples have one or

more buildings surrounded by a large grassy area. Evidentially, the methods

employed have trouble discriminating areas of bare soil surrounded by grass

from buildings surrounded by grass.

Finally both the dry land class and commercial/industrial class are

confused with the multilane highway class. To explain this confusion it

should be observed that a 145 x 145 sample of multilane highway must contain

things other than a multilane highway. In the majority of the training

samples of multilane highway the other objects in the 145 x 145 areas

were either comiercial/industrial areas and/or dry land.

These results are encouraging. Even though some misses occur

they indicate that texture measures can be used to characterize compli-

cated land use classes.
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5.2 CapaiUteA o6 gthe Pa.mxua CIa6Zcation ftoceduu

A procedure which seems appropriate for evaluating the classification

scheme is to partition the image into regions as though a segmentation were

to be performed and then classify only those regions which are uniform.

In this case the regions are created by overlaying a 145 x 145 square grid

on the image as shown in Figure 16. The resulting 1156 regions include

680 which have more than 90% of their area composed of one of the nine

classes. In the study the definition of uniformity was relaxed to assure

an adequate number of samples.

The results of applying the pairwise classification scheme to the 680

regions are shown in Table 3. Observe that these results are comparable

to the training results given in Table 2 with the most significant difference

being only 8% below tne training results. In making this comparison it is

important to point out that seldom if ever did a training sample coincide

with one of the 680 regions considered. Further it should be observed

that three classes, namely, vehicle parking, runway/taxiway and aircraft

parking, have higher percentages of correct classification than those achieved

during training. This anomaly can be explained for the vehicle parking

and aircraft parking classes by noting in Table 3 the small number of samples

representing these two classes. To explain the discrepency for the runway/

taxiway class note the fact that the positioning of the paved runway area

within the 145 x 145 sample region will affect the values of the texture

measures. Ideally one would like the runway to pass through the center

of the region. However to adequately train the procedure to recognize

this class, samples reflecting less than ideal conditions were Included.
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Figure 16: The square grid used to segment the Sunnyvale
- scene.
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COMPUTER CLASSIFICATION
PIERCENT

SRES CON HH VPJ DL WTR RW APK WI TOTAL CORRECT

RES 28 5 0 0 0 0 0 0 0 33 87.9%

="CON 5 L48 1 0 6 0 5 0 8 174 85.06%

H 0 0 6 0 0 0 0 0 1 7 85.7%

, VPK o 1 0 5 0 0 0 0 0 6 83.0%

* DL 2 30 1 0 32 2 6 2 4279 83.2%
WTR 0 10 4 88 2 0 095 92.6%

RW 0 0 0 0 1 0 140 0 0 41 97.62

APK 0 0 0 0 0 0 0 5 0 5 00.%
?-W 0 6 0 0 1 0 0 0 33 40 82.5%

TOTAL 35 91 8 5 P46 90 53 7 46 680

OVERALL PERCENTAGE CORRECT CLASSIFICATION 86.0%

RES - Residential

COM - roimnercial/1ndustrial

MII - Mobil Home

UPl - Vehicle Parking Area

DL - Dry Land

VIT - Water

RW - Runvay/Taxivay

APK - Aircraft Parking

• W - Multilane lighvay

Table 3. The results obtained by applying the pairvise classification
scheme to 680 uniform regions ot the image.
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Consequently the difference in classification accuracies is attributable

to the good runway sample region alignment occurring just by chance in

* this study.

* Finally it should be observed that the misclassifications shown in

*Table 3 are very similar to those given in Table 2. The only exception

* being the five comercial/industrial samples which were misclassified in

runway/taxiway class. To explain this note that four of five areas mis-

classified in this manner involved large hangars. According to Table 1

hangars are a part of the commercial/industrial class. Yet the large han-

gars involved in misclassifications look nothing like the commrcial/indus-

tiral samples included in the training set for this class. This fact

together with the visual similarity of regions containing hangars to those

containing a runway explains the confusion. This can be observed from Figure 17.

5.3 A Segmnta.tion o6 .the Sene

Practically speaking in any automatic segmentation procedure there is

* . a level, say level i, at which a labeling of every remaining region must

be forced. Usually the percentage of the regions which are unspeci-

* fied and boundary decreases with increasing i since the smaller the regions

R, the more of them that will f ail into areas composed of a single class.

Admittedly there are mitigating factors, but a reasonable estimate of the

lower bound on the performance of a segmentation can be derived by forcing

a label on the regions at the lowest possible level, level 1. This follows

* from the fact that the percentage of unspecified and boundary regions

* - will be maximum at this level. Such a lower bound will be estimated in

this section. The data used to establish this lower bound are the 1156

145 z 145 regions shown In Figure 16.
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I
a.

Figure 17. The visual similarity between a region containing
a large hangar and one containing a portion of a
runvay/taxivay. (a) The region containing the
hangar. (b) The region containing a runway/taxiway.
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In forcing a label on these regions, a difficulty that is Immediately

encountered relates to establishing ground truth. For example, it is

possible for some of these regions to contain multiple land use classes.

To avoid any possible ambiguity rules were formulated for scoring the

segmentation. Let R be a 145 x 145 square in question. Further let

represent class j and A(wj) represent the area of R occupied by class

Then the scoring rules are as follows:

1. If R contains n classes, say w1,... wng and if A(wj) >> A(w k )

for all k such that 1 < k < n, k j j, then the correct labeling

of R is assumed to be

2. If R contains n classes, say Wn....w n , and if there are m classes,

say w1 ,w2,...,w, such that A(w1 ) -...- A(w.) and further that

A(wi) > A(wk), 1 < .j m, < < k < n, then the correct labeling

is assumed to be anyone of the W j, I <j ..

The results obtained by pairvise classification procedure to label

all the 1156 regions is given in Table 4. In examining these results it

is again important to note that seldom if ever did a training sample

coincide with one of the regions shown in Figure 16. The overall per-

centage of correct classification is about 83Z.

As will be observed six of the nine classes have good classification

accuracies, ones which compare favorably to those obtained when only uniform

regions are considered (Table 3). However, three of the classes, namely,

mobile home, vehicle parking and aircraft parking, do not. To explain

these low classification accuracies It Is Important to note that when only

%uniform regions are considered these classes have high probabilities of

correct classification. Given that each of these classes compose only a
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COMPUTER CLASSIFICATION

RESC~l H VPK DL WrR RW AKINTOTAL COMECTI

RES -431 19 0 0 0 0 0 0 4 66 65.2%

C014 6 298 1 0 9 0 5 1 14 334 89.22

H 0 5 60 10 000 1 12 50.0%

S.VPK 01308 1 2236.4%

* DL 2 144 1 0 1378 2 12 6 10 455 83.12

0 wTR 01 3 0 0 6 88 7 1 0 105 83.82

lbRW 00 00 1 068;010 69 98.62

iy-hi

AP K 0 1 00 3 069 01 19 47.42
MW 0 9 0 1 11 0 1 06 483.82

TOTAL 51 392 8 9 398 901 99 179215

OVERALL PERCENTAGE CORRECT CLASSIFICATION 83.4%

RES - Residential

Co1 - Comercial/Industrial

INH - Mobil Home

UPK - Vehicle Parking Area

DLI - Dry Land

WTR - Water

RW - Runvay/Taxivay

AfPPK Aircraft Parking

11W Multilane HiLghway

Table 4. The results obtained when the Image a
segmented. It should be noted that few
if any of the regions used In the see.tation

,exactly corresponded to the regions comprising
the training set.
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small percentage of the whole scene the obvious explanation for these poor

results is that most of the regions misclassified were actually boundary

regions. An examination of the data proves this explanation to be correct.

The percentage of correct classification of the other classes seemed

acceptable. As will be observed the algorithm failed gracefully on a

majority of the misclassified samples. Consider the residential class.

The majority of the misclassified residential samples were labeled as

commercial/industrial. Clearly if a residential area is to be missed,

the commercial/industrial class is the one which most closely resembles the

residential class.

The vast majority of the misclassified commercial/industrial samples

were called either residential, dry land or multilane highway. Similarly, the

vast majority of the misclassified dry land samples were called commercial/

industrial.

This leads one to the water class. As will be observed from Table 4

some water samples are uislabeled as commercial/industrial, dry land,

runway and aircraft parking. These are clearly very bad misses. However,

there is a mitigating factor. All the water samples which were mis-

classified into either the commercial/industrial class, the runway/taxiway

class, or the aircraft parking class contained a levee, i.e., an unspeci-

flied class, since none of the training samples for any of the classes

contained a levee. Finally some of the confusion between the water class

and the dry land class seems to be caused by mixtures of dry land and water.

Water samples which contained only reasonably small areas of dry land

were consistently called dry land by the algorithm.

The runway class was vary accurately classified with only two of the

68 samples being misclassifled as dry land. The multilane highway class
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had samples misclassified as commercial/industrial, residential and mobile

home. It Is interesting to note that each of the multilane highway training

samples contained areas from these three classes and dry land. However, only

the commercial/industrial, residential and mobile home areas contained

structures which could markedly affect the texture measures ability to detect

the presence of a major road.

{
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6. EVALUATING THE SPLITTING CRITERIA

Recall that the splitting criteria involves two tests, the Chi-Squared

test and the ratioing test. The Chi-squared test was formlated primarily to

differentiate uniform regions from unspecified regions whereas ratioing

was primarily formulated to differentiate uniform regions from boundary

regions. In this section studies aimed at evaluating these tests will be

briefly described.

6.1 Eua&tang th Copabi e 01. o CIv-Sqtue Ted.t

The data used to evaluate Chi-Squared test were taken from a square

area in the extreme upper right hand corner of the image. This area

contained 144 regions and comprised the last 12 elements of the first

12 rows of the grid given in Figure 16. This area was selected because

it contained a levee and a land/water boundary. The levee is of interest

because while being a part of the dry land class any 145 a 145 region con-

taining a levee must necessarily contain water. Also the training set

for the dry land class contained no levee samples. Hence the segmenta-

tion procedure should call such regions unspecified. The presence

of the land/water boundary could be used to determine whether Chi-squared

test could be used to find boundary regions.

The results of applying a simplified version of the Chi-squared test

to the 144 regions is sumnarized in Table 5. The first raw of this

table shows how the 53 verified unspecified regions were bandled by

the segmentation procedure. Observe that 44 (83%) of these were correctly

identified as being unspecified by the Chi-squared test. Of the 9

..regions which were mistakenly judged as being uniform, 7 of these were

correctly classified by the pairwise classifier.
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COMPUTER RESULTS

8902identifiled a
1-Uniform by the

1-Unspecif led or Vairvise classifier Total
1-Iousdary regions as __________number of
I f. y

1~ -Usoecldar regions II I 2 3

I-olor

h 1-. CMifoRRESLT

"regions

I.correctly G 55 0 61
H ~i classified

.a fr-iform
"-rs regions

incorrectly 0 0 0 0
I -" classified

Table 5,. A sinary of the results obtained by applying the simplified
form of the Chi-squared teat to the 144 regions contained in
a square area In the extreme upper right hand side of thd scene.
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The second row of Table 6 shows how the verified boundary regions

were handled. Observe that the Chi-squared test correctly identified 11 (37%)

of the 30 regions as boundary regions. Of the 19 regions which were not

Identified as boundary regions by the Chi-squared test, 17 (89Z) of these

were labeled by the pairwise classifier as belonging to one of their major

constituent classes. Therefore, only 2 out of 30 samples can be viewed

as incorrectly labeled. It should be noted that the Chi-squared test is

specifically derived to differentiate unspecified regions from uniform

regions and the correct differentiation of boundary regions from uniform

regions is really a secondary consideration for this test.

The third row corresponds to those verified uniform which were correct-

ly labeled as being a member of one of K classes by the Chi-squared test. The

fourth row corresponds to thos.. verified uniform which were Incorrectly

labeled by the Chi-squared test. Observe that only 6 (10%) of the correctly

labeled uniform regions were called unspecified by the test.

6.2 EvLuLtbg the o6 the Ratolig Te.t

The results acquired by applying the simplified version of the ratioing

test to the 102 regions is given in Table 6. Also shown is the results

of applying the the Chi-squared test with a .95 and the pairwise classi-

fication procedure to these same 102 samples. The first row shows how

the 65 verified boundary regions were handled. Observe that the

ratloing test alone could identify 27 of these regions. In all the

ratioing test identified 40 of the 65 regions. The Chi-squared test

aided by detecting 10 more. Thus in combination the two tests detected

772 of boundary regions.
The second and third rows show how verified uniform regions, both

those which were correctly and incorrectly classified by the pairwise

classifier were treated. Observe that the ratioing test mistakenly called
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COMPUTER RESULTS

Regions Identified a
1-Dodry regions 1-Unifors by the

palrvse clasifier Total
,___n umber of

dentlfled Identlfied Identified Total Correctly Incorrectly regions

7 Ci by ratioing by both Ohi-number of Il...Ifted lielfled
red test Squared end I-Doundary

et etloing regions
tests Identified I

W I-Soundry regions tO 27 5S 50 13 2 65

corcl ___ 4__1_0 2* 1-uniforI
regions

S Inconrectly
aL Classified I3 0 2

Table 6 : A sumary of the results obtained by applying the simplified 
forms

of the ratioing test and the Chi-squared test to 102 regions.

Note that the table also indicates the classiflcation results

obtained by the pairrise classifier for the 102 regions.
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7 (24%) of these regions boundary region. Further the Chi-squared test

incorrectly labeled an additional 11 (38%). The poor performance of the

Chi-squared test in this case is probably a result of a suboptimal choice

of a.

On the third row observe that of the 8 incorrectly labeled uniforms by

the classifier 6 (75%) regions were identified as boundary regions.
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7. SUMMARY AND CONCLUSIONS

This paper described a study aimed at segmenting a high resolution

urban scene. To accomplish this objective a statistical segmentation

procedure was developed; one whose primitive operators were SGLDM texture

measures. The procedure is an early vision system based on a split type

algorithm. It considers three types of regions at each level of the seg-

mentation, uniform, boundary mnd unspecified. The procedure is based

on three hypothesis tests. Experiments were performed which indicate

the utility of the methodologies employed. In particular a training re-

sult of 90% overall correct classification for the nine classes considered

confirms the ability of the texture algorithm to characterize land use

classes. Further an approximate lower bound of 832 correct classification

was established on the performance of the segmentation procedure in inde-

pendent testing samples. Finally the performance of the tests associated

with the decision to split a region were evaluated. -The results show

that these tests performed well In making a split decision. The results

obtained substantiate the use of texture operators to segment complicated

urban scenes.

As stated previously the segmentation procedure was not completely

Implemented In that multiple levels could not be considered. A further

study Is required to consider this case. Also, methods to Incorporate

more world knowledge need be Investigated. Finally methods for Improving

the measurement selection algorithm should be studied since the algorithm

used considers only the ability of a ueasure to correctly classify

uniform regions.
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